Extra Gain: Improved Sparse Channel Estimation Using Reweighted l_1-norm Penalized LMS/F Algorithm
نویسندگان
چکیده
The channel estimation is one of important techniques to ensure reliable broadband signal transmission. Broadband channels are often modeled as a sparse channel. Comparing with traditional dense-assumption based linear channel estimation methods, e.g., least mean square/fourth (LMS/F) algorithm, exploiting sparse structure information can get extra performance gain. By introducing -norm penalty, two sparse LMS/F algorithms, (zero-attracting LMSF, ZA-LMS/F and reweighted ZA-LMSF, RZA-LMSF), have been proposed [1]. Motivated by existing reweighted -norm (RL1) sparse algorithm in compressive sensing [2], we propose an improved channel estimation method using RL1 sparse penalized LMS/F (RL1-LMS/F) algorithm to exploit more efficient sparse structure information. First, updating equation of RL1-LMS/F is derived. Second, we compare their sparse penalize strength via figure example. Finally, computer simulation results are given to validate the superiority of proposed method over than conventional two methods. Keywords—Adaptive sparse channel estimation; zero-attracting least mean square/fourth (ZA-LMS/F); reweighted -norm sparse penalty;compressive sensing.
منابع مشابه
Reweighted l1-norm Penalized LMS for Sparse Channel Estimation and Its Analysis
A new reweighted l1-norm penalized least mean square (LMS) algorithm for sparse channel estimation is proposed and studied in this paper. Since standard LMS algorithm does not take into account the sparsity information about the channel impulse response (CIR), sparsity-aware modifications of the LMS algorithm aim at outperforming the standard LMS by introducing a penalty term to the standard LM...
متن کاملSparse channel estimation with lp-norm and reweighted l1-norm penalized least mean squares
The least mean squares (LMS) algorithm is one of the most popular recursive parameter estimation methods. In its standard form it does not take into account any special characteristics that the parameterized model may have. Assuming that such model is sparse in some domain (for example, it has sparse impulse or frequency response), we aim at developing such LMS algorithms that can adapt to the ...
متن کاملLeast Mean Square Algorithm with Application to Improved Adaptive Sparse Channel Estimation
Least mean square (LMS) based adaptive algorithms have been attracted much attention since their low computational complexity and robust recovery capability. To exploit the channel sparsity, LMS-based adaptive sparse channel estimation methods, e.g., L1-norm LMS or zero-attracting LMS (sparse LMS or ZA-LMS), reweighted zero attracting LMS (RZA-LMS) and Lp-norm LMS (LP-LMS), have been proposed b...
متن کاملLeast Mean Square/Fourth Algorithm with Application to Sparse Channel Estimation
Broadband signal transmission over frequencyselective fading channel often requires accurate channel state information at receiver. One of the most attracting adaptive channel estimation methods is least mean square (LMS) algorithm. However, LMS-based method is often degraded by random scaling of input training signal. To improve the estimation performance, in this paper we apply the standard l...
متن کاملIMAC: Impulsive-mitigation adaptive sparse channel estimation based on Gaussian-mixture model
Broadband frequency-selective fading channels usually have the inherent sparse nature. By exploiting the sparsity, adaptive sparse channel estimation (ASCE) methods, e.g., reweighted L1-norm least mean square (RL1-LMS), could bring a performance gain if additive noise satisfying Gaussian assumption. In real communication environments, however, channel estimation performance is often deteriorate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1407.6078 شماره
صفحات -
تاریخ انتشار 2014